Jurusan Pendidikan Fisika
Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam
Universitas Pendidikan Indonesia
SILABI
Matakuliah | Fisika Kuantum | Kode | FIS526 |
| |||||||||
Dosen | Parlindungan Sinaga, Drs., M.Si | ||||||||||||
Semester | Ganjil | Kredit | 4 | Jumlah Pertemuan | | Jumlah Jam | 4 | ||||||
Jumlah Mahasiswa | | Jumlah Kelas | | ||||||||||
Pra-syarat | Pernah mengikuti kuliah Matematika Fisika dan Fisika Modern | ||||||||||||
Wajib / Pilihan | Wajib | ||||||||||||
MKDU /MKDK /MKBS /MKPBM | MKBS | ||||||||||||
Tujuan Matakuliah | Mahasiswa memahami bahwa fisika kuantum lebih umum dari pada fisika klasik dan mengetahui kapan suatu permasalahan dibahas secara mekanika kuantum dan kapan dibahas secara klasik. | ||||||||||||
Deskripsi Matakuliah | Materi perkuliahan ini adalah : ide-ide dasar mekanika kuantum, formulasi keadaan dalam mekanika kuantum, transformasi ruang keadaan, probabilitas gelombang-materi, ruang fungsi gelombang partikel tunggal, persamaan Schrodinger, aplikasi persamaan Schrodinger pada permasalahan sederhana 1 dimensi dan 3 dimensi, gaya sentral dan momentum angular. | ||||||||||||
Buku Wajib | Cohen Tannoudji, Quantum Mechanics, Volume I, Wiley International. | ||||||||||||
Buku Referensi | 1. Richard Loboff, Introduction to Quantum Mechanics, Addison Wesley, Publishing Company. 2. S. Brandt, & H. Dicter, The Picture Book of Quantum Mechanics, John Willey & Soms. 3. John D. Mc.Gervey, Quantum Mechanics Concep & Applications Akademic Press. | ||||||||||||
Media | | ||||||||||||
Evaluasi | Evaluasi dilakukan tiga kali yaitu tes unit 1, tes unit 2, dan tes unit 3. | ||||||||||||
Tugas mahasiswa | |
Jadwal | Kegiatan | Referensi | |
1st | Pendahuluan | | |
2nd | Ide-ide dasar mekanika kuantum; radiasi benda hitam, efek foto listrik, efek compton dualisme gelombang partikel, prinsip ketidak pastian Heisenbergh. | Kuliah (ceramah), diskusi dan latihan (responsi) | Buku1 :hal.431 Buku2 :hal.106 |
3rd | Probabilitas gelombang materi, gelombang paket. | Kuliah (ceramah), diskusi dan latihan (responsi) | Buku1 :hal.303 Buku2 :hal.126 |
4rd | Interpretasi probabilitas dan prinsip ketidakpastian: harga ekspektasi dan variansi. | Kuliah (ceramah), diskusi dan latihan (responsi) | Buku1 :hal.331 Buku2 :hal.204 |
5th | Ruang fungsi gelombang partikel tunggal: Struktur ruang fungsi gelombang, operator linier, sifat komutator, basis orthonormal diskrit. | Kuliah (ceramah), diskusi dan latihan (responsi) | Buku1 :hal.331 Buku2 :hal.204 |
6th | Fungsi eiogen dan nilai eigen dari operator. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.324 Buku2 :hal.254 |
7th | Persamaan Schrodinger dan aplikasinya : persamaan schrodinger bebas waktu, persamaan schrodinger bergantung waktu. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.331 Buku2 :hal.204 |
8th | Aplikasi persamaan schrodinger pada persamaan satu dimensi: partikel bebas, step potensi, Barrier potensial. | Kuliah (ceramah), diskusi dan latihan (responsi uliah (ceramah) | Buku1 :hal.341 |
9th | Sumur potensial persegi berhimgga, sumur potensial persegi takhingga, potensial osilator harmonik sederhana. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal344 |
10th | Persamaan dalam tiga dimensi : partikel bebas dalam koordinat Cartesian. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.348 |
11th | Partikel bebas dalam koordinat bola: fungsi gelombang radial. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.354 |
12th | Permasalahan gaya sentral (atom hidrogen), Hamiltonian, Harga eigen dan fungsi eigen. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.372 Buku2 :hal.279 |
13th | Fungsi keadaan dalam arah radial, fungsi keadaam dalam arah orbital. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.379 |
14th | Momentum angular orbital, sifat dasar momentum angular, harga eigen dari operator momentum angular. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.388 |
15th | Fungsi eigen dari momentum angular orbital. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.401 |
16th | Penjumlahan momentum sudut : representasi gandeng dan tak gandeng, operator CSCO. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku2 ;hal.542 |
17th | Penjumlahan momentum sudut untuk sistem dua elektron, untuk sistem elektron baryah. | Kuliah (ceramah), diskusi dan latihan (responsi Kuliah (ceramah) | Buku1 :hal.424. |
18th | | | |
Sumber | : | Buku Wajib Cohen Tannoudji, Quantum Mechanics, Volume I, Wiley International. Buku Referensi 1. Richard Loboff, Introduction to Quantum Mechanics, Addison Wesley, Publishing Company. 2. S. Brandt, & H. Dicter, The Picture Book of Quantum Mechanics, John Willey & Soms. 3. John D. Mc.Gervey, Quantum Mechanics Concep & Applications Akademic Press. |
Quantum mechanics, also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of the dual particle-like and wave-like behaviour and interaction of matter and energy.
Quantum mechanics departs from classical mechanics primarily at the atomic and sub-atomic scales, the so-called quantum realm. In special cases some quantum mechanical processes are macroscopic, but these emerge only at extremely low or extremely high energies or temperatures.
The term was coined by Max Planck, and derives from the observation that some physical quantities can be changed only by discrete amounts, or quanta, as multiples of the Planck constant, rather than being capable of varying continuously or by any arbitrary amount. For example, the angular momentum, or more generally the action, of an electron bound into an atom or molecule is quantized. Although an unbound electron does not exhibit quantized energy levels, one which is bound in an atomic orbital has quantized values of angular momentum. In the context of quantum mechanics, the wave–particle duality of energy and matter and the uncertainty principle provide a unified view of the behavior of photons, electrons and other atomic-scale objects.
The mathematical formulations of quantum mechanics are abstract. Similarly, the implications are often counter-intuitive in terms of classical physics. The centerpiece of the mathematical formulation is the wavefunction (defined by Schrödinger's wave equation), which describes the probability amplitude of the position and momentum of a particle. Mathematical manipulations of the wavefunction usually involve the bra-ket notation, which requires an understanding of complex numbers and linear functionals. The wavefunction treats the object as a quantum harmonic oscillator and the mathematics is akin to that of acoustic resonance.
Many of the results of quantum mechanics do not have models that are easily visualized in terms of classical mechanics; for instance, the ground state in the quantum mechanical model is a non-zero energy state that is the lowest permitted energy state of a system, rather than a traditional classical system that is thought of as simply being at rest with zero kinetic energy.
Fundamentally, it attempts to explain the peculiar behaviour of matter and energy at the subatomic level—an attempt which has produced more accurate results than classical physics in predicting how individual particles behave. But many unexplained anomalies remain.
Historically, the earliest versions of quantum mechanics were formulated in the first decade of the 20th Century, around the time that atomic theory and the corpuscular theory of light as interpreted by Einstein first came to be widely accepted as scientific fact; these latter theories can be viewed as quantum theories of matter and electromagnetic radiation.
Following Schrödinger's breakthrough in deriving his wave equation in the mid-1920s, quantum theory was significantly reformulated away from the old quantum theory, towards the quantum mechanics of Werner Heisenberg, Max Born, Wolfgang Pauli and their associates, becoming a science of probabilities based upon the Copenhagen interpretation of Niels Bohr. By 1930, the reformulated theory had been further unified and formalized by the work of Paul Dirac and John von Neumann, with a greater emphasis placed on measurement, the statistical nature of our knowledge of reality, and philosophical speculations about the role of the observer.
The Copenhagen interpretation quickly became (and remains) the orthodox interpretation. However, due to the absence of conclusive experimental evidence there are also many competing interpretations.
Quantum mechanics has since branched out into almost every aspect of physics, and into other disciplines such as quantum chemistry, quantum electronics, quantum optics and quantum information science. Much 19th Century physics has been re-evaluated as the classical limit of quantum mechanics and its more advanced developments in terms of quantum field theory, string theory, and speculative quantum gravity theories.
Tidak ada komentar:
Posting Komentar