Jumat, 29 Februari 2008

Fisika Modern

Seri Perkuliahan Fisika Modern



Lecture 2 of Leonard Susskind's Modern Physics course concentrating on Classical Mechanics. Recorded October 15, 2007 at Stanford University.

This Stanford Continuing Studies course is the first of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on classical mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:

http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...

Stanford University channel on YouTube:
http://www.youtube.com/stanford (less info)

Lecture by:

Leonard Susskind

Felix Bloch Professor of Physics

Director, Stanford Institute for Theoretical Physics (SITP)

Leonard Susskind



Room 332
Varian Physics Bldg
382 Via Pueblo Mall
Stanford, CA 94305-4060

tel 650-723-2686
fax 650-723-9389
susskind@stanford.edu


Research Interests

Current research is involved with the following topics: models of internal structure of hadrons, gauge theories, quark confinement, symmetry breaking, instantons, quantum statistical mechanics, baryon production in the universe, model for fermion masses, gravity in lower dimensions and quantum cosmology.

Career History

  • B.S., 1962, City College of New York
  • Ph.D., 1965, Cornell University
  • National Science Foundation Postdoctoral Fellow, Cornell University, 1965-66
  • Assistant Professor of Physics, Belfer Graduate School of Science, Yeshiva University, 1966-68
  • Associate Professor of Physics, Belfer Graduate School of Science, Yeshiva University 1968-70
  • Professor of Physics, University of Tel Aviv, 1971-72
  • Professor of Physics, Belfer Graduate School of Science, Yeshiva University 1970-79
  • Professor of Physics, Stanford University, 1979-present
  • Pregel Award, New York Academy of Science, 1975
  • Loeb Lecturer, Harvard University, 1976
  • J.J. Sakurai Prize in Theoretical Particle Physics, 1997
  • Felix Bloch Professorship in Physics, 2000-present
  • Director, Stanford Institute for Theoretical Physics,


Graduate Students


Other Things of Interest

Society of Physics Students

Rabu, 27 Februari 2008

Physics II: Electricity and Magnetism Oleh: Michael Shaw



Instructors:
Michael Shaw
MIT Course Number:
8.022 / ESG.8022
Level:
Undergraduate


Magnetic lines of force of a bar magnet, shown by iron filings on paper. (Image courtesy of Wikipedia.)


Download Course Materials

Course Features

Course Description

This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials.

This class was taught by an undergraduate in the Experimental Study Group(ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.


Sumber:


MIT Open Course

Senin, 18 Februari 2008

Fisika Modern

Seri Perkuliahan Fisika Modern



Lecture 1 of Leonard Susskind's Modern Physics course concentrating on Classical Mechanics. Recorded October 15, 2007 at Stanford University.

This Stanford Continuing Studies course is the first of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on classical mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:

http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...

Stanford University channel on YouTube:
http://www.youtube.com/stanford (less info)

Lecture by:

Leonard Susskind

Felix Bloch Professor of Physics

Director, Stanford Institute for Theoretical Physics (SITP)

Leonard Susskind



Room 332
Varian Physics Bldg
382 Via Pueblo Mall
Stanford, CA 94305-4060

tel 650-723-2686
fax 650-723-9389
susskind@stanford.edu


Research Interests

Current research is involved with the following topics: models of internal structure of hadrons, gauge theories, quark confinement, symmetry breaking, instantons, quantum statistical mechanics, baryon production in the universe, model for fermion masses, gravity in lower dimensions and quantum cosmology.

Career History

  • B.S., 1962, City College of New York
  • Ph.D., 1965, Cornell University
  • National Science Foundation Postdoctoral Fellow, Cornell University, 1965-66
  • Assistant Professor of Physics, Belfer Graduate School of Science, Yeshiva University, 1966-68
  • Associate Professor of Physics, Belfer Graduate School of Science, Yeshiva University 1968-70
  • Professor of Physics, University of Tel Aviv, 1971-72
  • Professor of Physics, Belfer Graduate School of Science, Yeshiva University 1970-79
  • Professor of Physics, Stanford University, 1979-present
  • Pregel Award, New York Academy of Science, 1975
  • Loeb Lecturer, Harvard University, 1976
  • J.J. Sakurai Prize in Theoretical Particle Physics, 1997
  • Felix Bloch Professorship in Physics, 2000-present
  • Director, Stanford Institute for Theoretical Physics,


Graduate Students


Other Things of Interest

Pendahuluan Fisika Zat Padat

Matakuliah : Pendahuluan Fisika Zat Padat

Nama Dosen :

1. Dra. Wiendartun, M.Si

2. Dra. Heni, M.Si.

3. Drs. Yuyu R. Tayubi, M.Si.

[pdf] 0.SILLABY Pend.Pdt-1.pdf

Pustaka :

1. Kittel Charles, Introduction to Solid State Physics 7th.ed, 1996, John Wiley & Sons, New York
2. Ashcroft and Mermin, Solid State Physics, 1976, Saunders College , Philadelphia.


Standar Kompotensi :

Menguasai pengetahuan tentang Pendahuluan Fisika Zat Padat yaitu : struktur kristal, difraksi sinar- x oleh kristal, ikatan kristal, vibrasi kristal , sifat thermal kristal, gas electron bebas, teori pita energi, kristal semikonduktor, superkonduktivitas dan sifat kemagnetan zat padat serta dapat mengaplikasikannya sesuai dengan perkembangan sains dan teknologi serta relevan dengan tuntutan kompetensi dalam standart nasional pendidikan.

MATAKULIAH PENDAHULUAN FISIKA ZAT PADAT

I. DESKRIPSI

Perkuliahan ini merupakan pendalaman dari kuliah siklus pertama (Fisika Modern) serta sebagai dasar untuk mengambil matakuliah Fisika Zat Padat Kompetensi yang diharapkan adalah memiliki wawasan yang memadai dan menguasai pengetahuan mengenai Pendahuluan Fisika Zat Padat, serta dapat sesuai dengan perkembangan sains dan teknologi. Perkuliahan ini membahas konsep Fisika yang meliputi :. struktur kristal, difraksi sinar- x oleh kristal, ikatan kristal, vibrasi kristal , sifat thermal kristal, gas electron bebas, teori pita energi, kristal semikonduktor, superkonduktivitas dan sifat kemagnetan zat padat Perkuliahan ini merupakan pilihan wajib untuk program nondik serta matakuliah pilihan untuk program dik. Perkuliahan disampaikan melalui metoda : ceramah, tanya jawab , diskusi, simulasi dan experimen dengan pendekatan pemecahan masalah. Evaluasi dilakukan melalui test dan non test.


II. SILABUS
1. Identitas Matakuliah
a. Nama Matakuliah : Pendahuluan Fisika Zat Padat
b. Kode Matakuliah : FI 362
c. Jumlah SKS : 3
d. Semester : Ganjil/Genap
e. Kelompok Matakuliah : MKPP ( Matakuliah Perluasan dan Pendalaman)
f. Program studi : Dik / Non-Dik
g. Status Matakuliah : Pilihan
h. Prasyarat : Fisika Modern, Statistik,Kuantum
i Dosen : WD, YRT,HR


2. Tujuan :

Selesai mengikuti perkuliahan ini mahasiswa diharapkan memiliki wawasan dan menguasai pengetahuan mengenai, struktur kristal, difraksi sinar- x oleh kristal, ikatan kristal, vibrasi kristal , sifat thermal kristal, gas electron bebas, teori pita energi, kristal semikonduktor, superkonduktivitas dan sifat kemagnetan zat padat serta dapat mengaplikasikannya sesuai dengan perkembangan sains dan teknologi.

3. Deskripsi isi :

Materi yang dibahas dalam perkuliahan ini meliputi : struktur kristal, difraksi sinar- x oleh kristal, ikatan kristal, vibrasi kristal , sifat thermal kristal, gas electron bebas, teori pita energi, kristal semikonduktor, superkonduktivitas dan sifat kemagnetan zat padat.

4. Pendekatan / metoda pembelajaran :
Ceramah,tanya jawab , diskusi, simulasi dan experimen dengan pendekatan pemecahan masalah.

5. Media Pembelajaran:
OHT, pwr point,demonstrasi.

6. Evaluasi:
Kehadiran , tugas
Quiss , Test Unit-1, test Unit 2 dan test Unit 3.

7. Materi perkuliahan :

7.1. Pertemuan ke -1 : Struktur kristal
[pdf] 1.Struktur Kristal (hand out).pdf
7.2. Pertemuan ke -2 : Struktur kristal
[pdf] 1.STRUKTUR KRISTAL(Kuliah).pdf
7.3 Pertemuan ke -3 : Difraksi sinar- x oleh kristal
[pdf] 2AB.DIFRAKSI SINARX (Kuliah).pdf
7.4 Pertemuan ke -4 : Difraksi sinar- x oleh kristal
[pdf] 2.Difraksi Sinar X.pdf
7.5 Pertemuan ke -5 : Ikatan Kristal
[pdf] 3.IkatanKristal(kuliah-2).pdf
7.6 Pertemuan ke -6 : Vibrasi Kristal
[pdf] 3.Ikatan Kristal.pdf
7.7 Pertemuan ke -7 : Vibrasi Kristal
[pdf] 4.Vibrasi (kuliah).pdf
7.8 Pertemuan ke -8 : Test Unit - I

7.9 Pertemuan ke -9 : Sifat Thermal Kristal
[pdf] 5.SIFAT TERMAL KRISTAL.pdf
7.10 Pertemuan ke-10 : Sifat Thermal Kristal
[pdf] 5.SifatThermalKristal(Kuliah).pdf
7.11 Pertemuan ke-11 : Gas electron bebas
[pdf] 6.Model elektron bebas(KULIAH).pdf
7.12 Pertemuan ke-12 : Teori Pita Energi
[pdf] 7.BAB VII- PITA ENERGI.pdf
[pdf] 7.PitaEnergi (Kuliah).pdf
7.13 Pertemuan ke-13 : Kristal semikonduktor
[pdf] 8.KRISTAL SEMIKONDUKTOR.pdf
[pdf] 8.Semikonduktor (Kuliah).pdf
7.14 Pertemuan ke-14 : Superkonduktivitas
[pdf] 9.Superkonduktor (Kuliah).pdf
[pdf] 9C.SUPERKONDUKTOR.pdf
7.15 Pertemuan ke-15 : Sifat kemagnetan zat padat
[pdf] 10.Bab X- KEMAGNETAN BAHAN.pdf
[pdf] 10.SifatKmagnetanBhn (Kuliah).pdf
7.16 Pertemuan ke-16 : Test Unit - II


8. Buku Sumber :

8.1. Buku Utama :

Kittel Charles, Introduction to Solid State Physics 6th, 1991, John Wiley & Sons, New York

8.2. Referensi :

8.2.1. Ashcroft and Mermin, Solid State Physics, 1976, Saunders College , Philadelphia
8.2.2. M.A.Oemar, Fundamental of Solid State Physics, 1977, Addison Wesley, USA.
8.2.3. Adrianus J Dekker, Solid State Physics, 1978, Maruzen company LTD, Japan
8.2.4. H.M.Rosenberg, The Solid State Physics Third Edition, 1987, Oxford Science Publications, USA.
8.2.4. Christman, Introduction to Solid Physics, 1989, John Wiley & Sons, USA.


Introduction to Solid State Physics

Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms the theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors.

Background

Solid materials are formed from densely-packed atoms, which interact intensely. These interactions produce the mechanical (e.g. hardness and elasticity), thermal, electrical, magnetic and optical properties of solids. Depending on the material involved and the conditions in which it was formed, the atoms may be arranged in a regular, geometric pattern (crystalline solids, which include metals and ordinary water ice) or irregularly (an amorphous solid such as common window glass).

The bulk of solid-state physics theory and research is focused on crystals. Primarily, this is because the periodicity of atoms in a crystal — its defining characteristic — facilitates mathematical modeling. Likewise, crystalline materials often have electrical, magnetic, optical, or mechanical properties that can be exploited for engineering purposes.

The forces between the atoms in a crystal can take a variety of forms. For example, in a crystal of sodium chloride (common salt), the crystal is made up of ionic sodium and chlorine, and held together with ionic bonds. In others, the atoms share electrons and form covalent bonds. In metals, electrons are shared amongst the whole crystal in metallic bonding. Finally, the noble gases do not undergo any of these types of bonding. In solid form, the noble gases are held together with van der Waals forces resulting from the polarisation of the electronic charge cloud on each atom. The differences between the types of solid result from the differences between their bonding.

Solid State Physics


Lectures by:

Branislav K. Nikolić
Department of Physics and Astronomy, University of Delaware, U.S.A.

Instructor: Dr. Branislav K. Nikolic

Contact: Email: bnikolic@physics.udel.edu Phone: (302) 831-2943 Fax: (302) 831-1637.

Class mailing list: PHYS624-010-05F@udel.edu

Instructor Information: I am a condensed matter theorist, currently focused on spintronics, mesoscopic physics, quantum chaos, and quantum information science. See the home page of Quantum Transport Theory Group or of my Teaching for more information.

Course Prerequisites: Familiarity with single-particle Quantum Mechanics and Statistical Mechanics of non-interacting bosons and fermions.



Ex Cathedra Lectures:

Notes:

HTML:


Computer Experiments

JAVA Applets:

Electrons:

Phonons:

Experimental Techniques

Complex Systems:

Animation:


Computer Algebra Lectures:

Problem Sets

Discussion Board
  • Solution to Problem 1. of Homework 2 (Maple Worksheet)
  • Fourier Analysis in Solid State Physics
  • Solution to Problem 1. and Problem 3. of Homework 3 (PDF)
  • Hint (Fourier Transform for solving integro-differential equations) for Problem 1. of Homework 6 (PDF)

Faculty


Professor of Physics, UC Berkeley, since 1951, Emeritus since 1978.B.A. from Cambridge University, England, 1938; Ph.D. from University of Wisconsin, 1941. Research Physicist at MIT, 1945-47; Research Physicist at Bell Telephone Laboratories, 1947-51; Guggenheim Fellow, 45 (post-service MIT), 1957 (Hawaii), 1965 (ENS, Paris); Miller Fellow, 1960-62. Recipient of the Buckley Prize for Solid State Physics, 1957; Oersted Medal, American Association of Physics Teachers, 1972; Berkeley Distinguished Teacher Award, 1970. Fellow, American Academy of Arts and Sciences; member, National Academy of Sciences. Author: Introduction to Solid State Physics, 1st ed. 1953 - 7th ed. 1996, Quantum Theory of Solids, 1963, and (with C. Y. Fong) 1987, Thermal Physics, 1969 and (with H. Kroemer) 1980.

Charles Kittel
Professor Emeritus
Research: Condensed Matter Physics And Materials Science
Campus Office:
559 Birge
Fax: (510) 643-9473
Email: kittel@berkeley.edu

Catatan:

Laman ini terus mengalami perbaikan.

Minggu, 17 Februari 2008

Electricity and Magnetism oleh: Prof. Walter Lewin



Instructors:
Prof. Walter Lewin
MIT Course Number:
8.02
Level:
Undergraduate




Professor Walter Lewin photographed during a demonstration bouncing a balloon (sprayed with conducting paint) between his head and a small Van de Graaff generator. This demonstration can be viewed on the video of Lecture 2. (Image courtesy of Markos Hankin, MIT Physics Department Lecture Demonstration Group.)



Download Course Materials


Course Features

Course Highlights

This course features a complete set of videotaped lectures. The 36 video lectures on Electricity and Magnetism, by Professor Lewin, were recorded on the MIT campus during the Spring of 2002. Prof. Lewin is well-known at MIT and beyond for his dynamic and engaging lecture style.

Course Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology.

There is a build-your-own-motor contest as part of this course (see Calendar).

OpenCourseWare presents another version of 8.02T: Electricity and Magnetism.

OpenCourseWare also presents Professor Lewin's freshman physics course series8.01: Newtonian Mechanics with a complete set of 35 video lectures from the Fall of 1999 and 8.03: Vibrations and Waves with a complete set of 23 video lecturesfrom the Fall of 2004.


Sumber:

MIT Open Course Ware