Kamis, 01 Oktober 2009

Fisika Nuklir

Nuclear physics is the field of physics that studies the building blocks and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.

The field of particle physics evolved out of nuclear physics and is typically taught in close association with nuclear physics.


Introduction to Applied Nuclear Physics


The Rutherford-Bohr model of the atom with nucleus and orbits labeled.

The Rutherford-Bohr model of the atom. (Courtesy ofEPA.)

Level:

Undergraduate

Instructors:

Prof. Kim Molvig

Course Description

This course concentrates on the basic concepts of nuclear physics with emphasis on nuclear structure and radiation interactions with matter. Included: elementary quantum theory; nuclear forces; shell structure of the nucleus; alpha, beta, and gamma radioactive decays; interactions of nuclear radiations (charged particles, gammas, and neutrons) with matter; nuclear reactions; and fission and fusion.

The course is divided into three main sections:

  1. Quantum Mechanics Fundamentals
  2. Nuclear Structure and Nuclear Decays
  3. Interactions in Nuclear Matter and Nuclear Reactions


Calendar

SES #TOPICSREADINGS & HANDOUTS
1

Intro Lectures: Basic Nucleus Concepts

2

Intro Lectures: Wave-Particle Duality & Historical Background

3

Quantum Mechanics #1, #2

  • New Concepts
  • Postulate 1 (Observables & Operators)
  • Eigenvalue Problem, Compare Classical State, Free Particles
  • Postulate 2 (Quantum State, psi)
  • Postulate 3 (measurement probabilities)

Liboff 3.1-3.3

Postulates Handout

4

Quantum Mechanics #3, #4

  • Free Particle in Box, Quantization of Energy Levels
  • Interpretation of the Wave Function
  • Solutions in Classically Allowed and Disallowed Regions
  • 1D Scattering Problem, Outgoing B.C.
  • Normalization of psi, Flux Interpretation,
  • Transmission and Reflection Coefficients.
  • Particle in Square Well Energy Eigenvalue Problem
  • Graphical Solution - Fitting Wavelength in Well

Liboff 4.1, 4.2, 4.3

Liboff 7.5, 7.6, 7.7

5

Quantum Mechanics #5, #6

  • Commutators
  • Heisenberg Uncertainty Principle
  • Degenerary, Complete Sets of Commuting Observables

Liboff 5.1-5.5

6

Quantum Mechanics #7, #8

  • Postulate 4 (Time Evolution)Conservation Laws
  • d < A >/ dt Expression
  • Ehrenfest Principle and Classical Limit
  • Quantum Mechanical Angular Momentum
  • Eignevalue Problem (for L) via Commutator Algebra
  • Algebraic Possibility of 1/2 Integer l Values
  • Orbital Angular Momentum
  • Spin Angular Momentum
  • Coupled and Uncoupled Representations

Liboff 3.4, 3.5, 6.2

Liboff 9.1-9.3

7

Quantum Mechanics #9

  • Many Particle Wave Functions
  • Symmetries of the Many Particle psi Function
  • Fermions and the Pauli Exclusion Principle
  • Bosons
8

Mid-Term Exam

9

Nuclear Structure #1, #2

  • Essential Features of Nuclear Force
  • Guess the Potential, Vnuc
  • Center of Mass, Remove Degree of Freedom
  • Deuteron Eigenvalue Problem, Ground State
  • Physical Picture of Deuteron
  • Spin Dependence of the Nuclear Force
  • "Tensor" Interaction

Krane 3

Krane 4

10

Nuclear Structure #3, #4

  • Nuclear Shell Model, Oscillator Levels
  • Nuclear Shell Model #2, Spin-Orbit Coupling, Magic Numbers

Krane 5

11

Nuclear Structure #5 -Radioactive Decay, Alpha Decay

Krane 8

12

Gamma Decay

Liboff 10.7

Krane 10

13

Nuclear Interactions #1, - Charged Particle Interactions

Krane 9

Krane 7

14

Beta Decay Nuclear Interactions #1, - Charged Particle Interactions (Cont'd)

Liboff 10.7

Krane 10

15

Nuclear Interactions #2, #3

  • Gamma Ray Iteractions
  • Neutron Interactions

Krane 12

16

Nuclear Interactions #4, #5

  • Fission
  • Fusion

Krane 13

Krane 14

References

  1. ^ B. R. Martin (2006). Nuclear and Particle Physics. John Wiley & Sons, Ltd.. ISBN 0-470-01999-9.
  2. ^ Henri Becquerel (1896). "Sur les radiations émises par phosphorescence". Comptes Rendus 122: 420–421.
  3. ^ Philosophical Magazine (12, p 134-46)
  4. ^ Proc. Roy. Soc. July 17, 1908
  5. ^ Proc. Roy. Soc. A82 p 495-500
  6. ^ Proc. Roy. Soc. Feb. 1, 1910
  7. ^ W. Pauli, Nobel lecture, December 13, 1946.
  8. ^ "Alexandru Proca (1897-1955) and his equation of the massive vector boson field by Dorin N. Poenaru 1, 2 and Alexandru Calboreanu". http://dx.doi.org/10.1051/epn:2006504 (Europhysics News): 37 (5): 25–27.
  9. ^ G. A. Proca, Alexandre Proca.Oeuvre Scientifique Publiée, S.I.A.G., Rome, 1988.
  10. ^ C. Vuille, J. Ipser, J. Gallagher, “Einstein-Proca model, micro black holes, and naked singularities”, General Relativity and Gravitation,34 (2002), 689.
  11. ^ R. Scipioni, “Isomorphism between non-Riemannian gravity and Einstein-Proca-Weyl theories extended to a class of scalar gravity theories”, Class. Quantum Gravity., 16 (1999), 2471.
  12. ^ R. W. Tucker and C. Wang, C., “An Einstein-Proca-fluid model for dark matter gravitational interactions”, Nucl. Phys. B - Proc. suppl., 57(1997) 259.

Tidak ada komentar: