The foundations of quantum mechanics were established during the first half of the twentieth century by Niels Bohr, Werner Heisenberg, Max Planck, Louis de Broglie, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David Hilbert, andothers. In the mid-1920s, developments in quantum mechanics led to its becoming the standard formulation for atomic physics. In the summer of 1925, Bohr and Heisenberg published results that closed the "Old Quantum Theory". Out of deference to their dual state as particles, light quanta came to be called photons (1926). From Einstein's simple postulation was born a flurry of debating, theorizing and testing. Thus the entire field of quantum physics emerged, leading to its wider acceptance at the Fifth Solvay Conference in 1927.
The other exemplar that led to quantum mechanics was the study of electromagnetic waves such as light. When it was found in 1900 by Max Planck that the energy of waves could be described as consisting of small packets or quanta, Albert Einstein further developed this idea to show that an electromagnetic wave such as light could be described as a particle - later called the photon - with a discrete quanta of energy that was dependent on its frequency.[3] This led to a theory of unity between subatomic particles and electromagnetic waves called wave–particle duality in which particles and waves were neither one nor the other, but had certain properties of both.
While quantum mechanics traditionally described the world of the very small, it is also needed to explain certain recently investigatedmacroscopic systems such as superconductors and superfluids.
Lecture 4 of Leonard Susskind's Modern Physics course concentrating on Quantum Mechanics. Recorded January 28, 2008 at Stanford University.
This Stanford Continuing Studies course is the second of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on quantum mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.
Complete playlist for the course:
http://youtube.com/view_play_list?p=189C0DCE90CB6D81
Stanford Continuing Studies: http://continuingstudies.stanford.edu/
About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...
Stanford University channel on YouTube:
http://www.youtube.com/stanford
- Course material
- Doron Cohen: Lecture notes in Quantum Mechanics (comprehensive, with advanced topics).
- MIT OpenCourseWare: Chemistry.
- MIT OpenCourseWare: Physics. See 8.04
- Stanford Continuing Education PHY 25: Quantum Mechanics by Leonard Susskind, seecourse description Fall 2007
- 5½ Examples in Quantum Mechanics
- Imperial College Quantum Mechanics Course.
- Spark Notes - Quantum Physics.
- Quantum Physics Online : interactive introduction to quantum mechanics (RS applets).
- Experiments to the foundations of quantum physics with single photons.
- Motion Mountain, Volume IV - A modern introduction to quantum theory, with several animations.
- AQME : Advancing Quantum Mechanics for Engineers — by T.Barzso, D.Vasileska and G.Klimeck online learning resource with simulation tools on nanohub
- Quantum Mechanics by Martin Plenio
- Quantum Mechanics by Richard Fitzpatrick
- Online course on Quantum Transport
Tidak ada komentar:
Posting Komentar