Jumat, 21 Agustus 2009

Fisika Modern

The foundations of quantum mechanics were established during the first half of the twentieth century by Niels Bohr, Werner Heisenberg, Max Planck, Louis de Broglie, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David Hilbert, andothers. In the mid-1920s, developments in quantum mechanics led to its becoming the standard formulation for atomic physics. In the summer of 1925, Bohr and Heisenberg published results that closed the "Old Quantum Theory". Out of deference to their dual state as particles, light quanta came to be called photons (1926). From Einstein's simple postulation was born a flurry of debating, theorizing and testing. Thus the entire field of quantum physics emerged, leading to its wider acceptance at the Fifth Solvay Conference in 1927.

The other exemplar that led to quantum mechanics was the study of electromagnetic waves such as light. When it was found in 1900 by Max Planck that the energy of waves could be described as consisting of small packets or quanta, Albert Einstein further developed this idea to show that an electromagnetic wave such as light could be described as a particle - later called the photon - with a discrete quanta of energy that was dependent on its frequency.[3] This led to a theory of unity between subatomic particles and electromagnetic waves called wave–particle duality in which particles and waves were neither one nor the other, but had certain properties of both.

While quantum mechanics traditionally described the world of the very small, it is also needed to explain certain recently investigatedmacroscopic systems such as superconductors and superfluids.


Some trajectories of a harmonic oscillator (a ball attached to a spring) in classical mechanics (A-B) and quantum mechanics (C-H). In quantum mechanics, the position of the ball is represented by a wave (called the wavefunction), with real part shown in blue and imaginary part in red. Some of the trajectories, such as C,D,E,F, are standing waves (or "stationary states"). Each standing-wave frequency is proportional to a possible energy level of the oscillator. This "energy quantization" does not occur in classical physics, where the oscillator can have any energy.


Lecture 4 of Leonard Susskind's Modern Physics course concentrating on Quantum Mechanics. Recorded January 28, 2008 at Stanford University.

This Stanford Continuing Studies course is the second of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on quantum mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:
http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...

Stanford University channel on YouTube:
http://www.youtube.com/stanford


Course material

Tidak ada komentar: