Jumat, 28 Agustus 2009

Fisika Modern

The word quantum derives from Latin, meaning "how great" or "how much".[4] In quantum mechanics, it refers to a discrete unit that quantum theory assigns to certain physical quantities, such as the energy of an atom at rest. The discovery that particles are discrete packets of energy with wave-like properties led to the branch of physics dealing with atomic and sub-atomic systems which is today called quantum mechanics. It is the underlying mathematical framework of many fields of physics and chemistry, including condensed matter physics, solid-state physics, atomic physics, molecular physics, computational physics, computational chemistry, quantum chemistry,particle physics, nuclear chemistry, and nuclear physics.[5] Some fundamental aspects of the theory are still actively studied.[6]

Quantum mechanics is essential to understand the behavior of systems at atomic length scales and smaller. For example, if classical mechanics governed the workings of an atom, electrons would rapidly travel towards and collide with the nucleus, making stable atoms impossible. However, in the natural world the electrons normally remain in an uncertain, non-deterministic "smeared" (wave–particle wave function) orbital path around or through the nucleus, defying classical electromagnetism.[7]

Quantum mechanics was initially developed to provide a better explanation of the atom, especially the differences in the spectra of lightemitted by different isotopes of the same element. The quantum theory of the atom was developed as an explanation for the electron remaining in its orbit, which could not be explained by Newton's laws of motion and Maxwell's laws of classical electromagnetism.

Broadly speaking, quantum mechanics incorporates four classes of phenomena for which classical physics cannot account:



Lecture 5 of Leonard Susskind's Modern Physics course concentrating on Quantum Mechanics. Recorded February 11, 2008 at Stanford University.

This Stanford Continuing Studies course is the second of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on quantum mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:
http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind

Course material

Jumat, 21 Agustus 2009

Fisika Modern

The foundations of quantum mechanics were established during the first half of the twentieth century by Niels Bohr, Werner Heisenberg, Max Planck, Louis de Broglie, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David Hilbert, andothers. In the mid-1920s, developments in quantum mechanics led to its becoming the standard formulation for atomic physics. In the summer of 1925, Bohr and Heisenberg published results that closed the "Old Quantum Theory". Out of deference to their dual state as particles, light quanta came to be called photons (1926). From Einstein's simple postulation was born a flurry of debating, theorizing and testing. Thus the entire field of quantum physics emerged, leading to its wider acceptance at the Fifth Solvay Conference in 1927.

The other exemplar that led to quantum mechanics was the study of electromagnetic waves such as light. When it was found in 1900 by Max Planck that the energy of waves could be described as consisting of small packets or quanta, Albert Einstein further developed this idea to show that an electromagnetic wave such as light could be described as a particle - later called the photon - with a discrete quanta of energy that was dependent on its frequency.[3] This led to a theory of unity between subatomic particles and electromagnetic waves called wave–particle duality in which particles and waves were neither one nor the other, but had certain properties of both.

While quantum mechanics traditionally described the world of the very small, it is also needed to explain certain recently investigatedmacroscopic systems such as superconductors and superfluids.


Some trajectories of a harmonic oscillator (a ball attached to a spring) in classical mechanics (A-B) and quantum mechanics (C-H). In quantum mechanics, the position of the ball is represented by a wave (called the wavefunction), with real part shown in blue and imaginary part in red. Some of the trajectories, such as C,D,E,F, are standing waves (or "stationary states"). Each standing-wave frequency is proportional to a possible energy level of the oscillator. This "energy quantization" does not occur in classical physics, where the oscillator can have any energy.


Lecture 4 of Leonard Susskind's Modern Physics course concentrating on Quantum Mechanics. Recorded January 28, 2008 at Stanford University.

This Stanford Continuing Studies course is the second of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on quantum mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:
http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...

Stanford University channel on YouTube:
http://www.youtube.com/stanford


Course material

Selasa, 18 Agustus 2009

Indonesian Physics Teacher Association

Himpunan Guru Fisika Indonesia

Visi

Excellent in Physics Education

Misi

Indonesian Physics Teacher Association's mission is to enhance the understanding and appreciation of physics through teaching.

When the organization was established in 2009, our goal was clear: "ensuring the dissemination of the knowledge of physics, particularly by way of teaching." We remain committed to that core value, but with a new emphasis and meaning provided by our current mission statement.

Our vision is to be the leader in physics education. We are committed to providing the most current resources and up-to-date research needed to enhance a physics educator's professional development. The results are not only a deeper appreciation of the teaching profession, but most importantly, more enthusiastic involvement from their students.

The Association has identified four critical issues that will guide our future activities:

  1. Increase Indonesian Physics Teacher Association's outreach to and impact on physics teachers
  2. Increase the diversity and numbers of physics teachers and students
  3. Improve the pedagogical skills and physics knowledge of teachers at all levels
  4. Increase our understanding of physics learning and of ways to improve teaching effectiveness

The twenty-first century will provide the greatest opportunities and challenges for us as we take an active role in shaping the future. Our success will depend on the commitment, dedication, and continued input of our members and the physics education community. Join us in this journey to enhance the quality and effectiveness of physics education at all levels.


Program

1. Contest and Competition

2. Awards and Recognation Programs

3. Grand and Scholarships

4. Colaborative Projects


Fokus

1. Indonesia Journal of Physics Education

2. The Physics Teacher

3. Physics Education Research

Founder:

(Arip Nurahman)

Jumat, 14 Agustus 2009

Fisika Modern

Historically, the earliest versions of quantum mechanics were formulated in the first decade of the 20th century at around the same time as the atomic theory and the corpuscular theory of light as updated by Einstein first came to be widely accepted as scientific fact; these latter theories can be viewed as quantum theories of matter and electromagnetic radiation. Quantum theory was significantly reformulated in the mid-1920s away from the old quantum theory towards the quantum mechanics formulated by Werner Heisenberg, Max Born, Wolfgang Pauli and their associates, accompanied by the acceptance of the Copenhagen interpretation of Niels Bohr. By 1930, quantum mechanics had been further unified and formalized by the work of Paul Dirac and John von Neumann, with a greater emphasis placed on measurement in quantum mechanics, the statistical nature of our knowledge of reality and philosophical speculation about the role of the observer. Quantum mechanics has since branched out into almost every aspect of 20th century physics and other disciplines such as quantum chemistry, quantum electronics, quantum optics and quantum information science. Much 19th century physics has been re-evaluated as the classical limit of quantum mechanics, and its more advanced developments in terms of quantum field theory, string theory, and speculative quantum gravity theories. (Wikipedia)


Lecture 3 of Leonard Susskind's Modern Physics course concentrating on Quantum Mechanics. Recorded January 28, 2008 at Stanford University.

This Stanford Continuing Studies course is the second of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on quantum mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:
http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...

Stanford University channel on YouTube:
http://www.youtube.com/stanford


Course material

Minggu, 09 Agustus 2009

Sejarah Fisika

Sejarah Fisika

Silabus dan Rencana Perkuliahan

Standar Kompetensi

Mengembangkan kemampuan dalam mengkaji pengetahuan dan wawasan tentang perkembangan fisika sebagai suatu disiplin ilmu dan masalahmasalah serta pikiran-pikiran yang melatarbelakanginya.

Mata Kuliah : Sejarah Fisika
Kode : FI 335
SKS : 2 SKS
Semester : 6
Nama Dosen : Bpk. Asep Sutiadi, S.Pd., M.Si.

[PDF]


Sejarah Fisika (FI 335)

I. Deskripsi

Mata kuliah ini merupakan perkuliahan pilihan kelompok perluasan dan pendalaman yang membekali pengetahuan dan wawasan perkembangan fisika, bagi mahasiswa pendidikan dan non-pendidikan. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami perkembangan fisika sebagai suatu disiplin ilmu dan masalah-masalah serta pikiran-pikiran yang melatarbelakanginya.

Lingkup perkuliahan meliputi: Asal-usul perkembangan fisika yang tercatat sejarah, kajian pustaka tentang topik-topik yang menyangkut suatu aspek fisika atau sumbangan suatu masyarakat terhadap perkembangan fisika, dan memahami serta mengenal kehidupan ilmuwan dan tokoh penyumbang penting perkembangan fisika. Pelaksanaan perkuliahan meliputi kegiatan ceramah dan tanya jawab, membuat dan mempresentasikan makalah, pemutaran film sains, dan diskusi kelas yang dilengkapi dengan penggunaan OHP dan LCD. Evaluasi hasil belajar mahasiswa didasarkan pada hasil pengolahan informasi yang diperoleh dari kehadiran, makalah,
tugas, presentasi, aktivitas selama perkuliahan, UTS, dan UAS.

Buku sumber:

Richtmeyer, dkk. (1955).

Introduction to Modern Physics, New York: McGraw Hill Company dan Jacoub, B. (1968).

Sejarah Fisika, Bandung: Jurusan Pendidikan Fisika.


2. Tujuan

Selesai mengikuti perkuliahan ini mahasiswa diharapkan memiliki pengetahuan dan wawasan tentang perkembangan fisika sebagai suatu disiplin ilmu dan masalah-masalah serta pikiran-pikiran yang melatarbelakanginya.

3. Deskripsi Isi

Dalam perkuliahan ini dibahas mengenai asal-usul perkembangan fisika yang tercatat sejarah yang meliputi periodisasi sejarah fisika menurut Richtmeyer dan menurut Jacoub, Fisika pada zaman Babilonia dan Mesir Kuno, Fisika di Yunani Kuno, Masa Islam, perkembangan Fisika Klasik, temuan-temuan pada akhir abad 19, dan Fisika Modern. Perkuliahan ini juga mengkaji pustaka tentang topik-topik yang menyangkut suatu aspek fisika atau sumbangan suatu masyarakat terhadap perkembangan fisika, yang meliputi: Sumbangan Cina, India, Jepang, dan Indonesia terhadap perkembangan Fisika; Perkembangan Mekanika, Ilmu Panas, Optika, Listrik Magnet, Teori Atom, Astronomi, Sains Kebumian, serta Teori dan Mekanika Kuantum pada tiap periode. Mengenal Kehidupan ilmuwan yang meliputi: Galileo Galilei, Isaac Newton, dan Albert Einstein, serta Mengenal Kehidupan Ilmuwan Islam Penyumbang Penting Perkembangan Fisika.

4. Pendekatan Pembelajaran

Pendekatan ekspositori. Metode yang digunakan ceramah, tanya jawab, diskusi, dan pemutaran film sains. Tugas-tugas berupa pembuatan makalah dan penyajiannya.

5. Media Pembelajaran

Media yang digunakan OHP dan LCD.

6. Evaluasi

Kehadiran, makalah, tugas, presentasi, aktivitas selama perkuliahan, UTS, dan UAS.


7. Materi Perkuliahan

7.1 Pertemuan 1: Penjelasan lingkup dan tagihan kuliah, pembagian kelompok, dan topik diskusi

7.2 Pertemuan 2: Asal-usul perkembangan fisika yang tercatat sejarah

7.3 Pertemuan 3: Sumbangan Babilonia, Mesir Kuno, dan Yunani Kuno dalam fisika serta penayangan film sains

7.4 Pertemuan 4: Sumbangan Islam dalam Fisika

7.5 Pertemuan 5: Berkembangnya metode eksperimen dalam fisika dan perkembangan fisika klasik

7.6 Pertemuan 6: Perkembangan fisika pada akhir abad ke-19 dan Perkembangan fisika Modern

7.7 Pertemuan 7: Perkembangan filsafat dan sains abad 20 serta penayangan film sains

7.8 Pertemuan 8: UTS

7.9 Pertemuan 9: Presentasi dan Diskusi Mahasiswa tentang:
1. Sumbangan Cina terhadap perkembangan fisika
2. Sumbangan India terhadap perkembangan fisika


7.10 Pertemuan 10: Presentasi dan Diskusi Mahasiswa tentang:
3. Sumbangan Jepang terhadap perkembangan fisika
4. Sumbangan Indonesia terhadap perkembangan fisika


7.11 Pertemuan 11: Presentasi dan Diskusi Mahasiswa tentang:
5. Perkembangan Mekanika pada tiap periode
6. Perkembangan Ilmu Panas pada tiap periode


7.12 Pertemuan 12: Presentasi dan Diskusi Mahasiswa tentang:
7. Perkembangan Optika pada tiap periode
8. Perkembangan Listrik Magnet pada tiap periode

7.13 Pertemuan 13: Presentasi dan Diskusi Mahasiswa tentang:
9. Perkembangan Teori Atom pada tiap periode
10. Perkembangan Teori dan Mekanika Kuantum pada tiap periode


7.14 Pertemuan 14: Presentasi dan Diskusi Mahasiswa tentang:
11. Perkembangan Sains Kebumian pada tiap periode
12. Perkembangan Astronomi pada tiap periode


7.15 Pertemuan 15: Presentasi dan Diskusi Mahasiswa tentang:
13. Mengenal Kehidupan Galileo Galilei
14. Mengenal Kehidupan Isaac Newton


7.16 Pertemuan 16: Presentasi dan Diskusi Mahasiswa tentang:
15. Mengenal Kehidupan Albert Einstein
16. Mengenal Kehidupan Ilmuwan Islam penyumbang Penting perkembangan Fisika

7.17 Pertemuan

17: UAS


8. Buku Sumber

Buku Sumber Utama:

Richtmeyer, Kennard, & Lauritson. (1955). Introduction to Modern Physics, New
York: McGraw Hill Company

Jacoub, Boer. (1968). Sejarah Fisika, Diktat, Bandung: Jurusan Pendidikan Fisika
IKIP Bandung.

Buku Sumber Referensi:

Cajori, F. (1968). A History of Physics, New York: Duver Publication Inc.

Selasa, 04 Agustus 2009

Fisika Modern


The mathematical formulations of quantum mechanics are abstract. Similarly, the implications are often non-intuitive in terms of classic physics. The centerpiece of the mathematical system is the wavefunction. The wavefunction is a mathematical function providing information about the probability amplitude of position and momentum of a particle. Mathematical manipulations of the wavefunction usually involve the bra-ket notation, which requires an understanding of complex numbers and linear functionals. The wavefunction treats the object as a quantum harmonic oscillator and the mathematics is akin to that of acoustic resonance. Many of the results of quantum mechanics do not have models that are easily visualized in terms of classical mechanics; for instance, the ground state in the quantum mechanical model is a non-zero energy state that is the lowest permitted energy state of a system, rather than a more traditional system that is thought of as simply being at rest with zero kinetic energy.
(Wikipedia)



Lecture 2

This Stanford Continuing Studies course is the second of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on quantum mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:
http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...

Stanford University channel on YouTube:
http://www.youtube.com/stanford

Course material