Kamis, 29 Mei 2008

Fisika Modern

Seri Perkuliahan Fisika Modern



Lecture 8 of Leonard Susskind's Modern Physics course concentrating on Classical Mechanics. Recorded October 15, 2007 at Stanford University.

This Stanford Continuing Studies course is the first of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on classical mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course:

http://youtube.com/view_play_list?p=189C0DCE90CB6D81

Stanford Continuing Studies: http://continuingstudies.stanford.edu/

About Leonard Susskind: http://www.stanford.edu/dept/physics/people/faculty/sussk...

Stanford University channel on YouTube:
http://www.youtube.com/stanford (less info)

Lecture by:

Leonard Susskind

Felix Bloch Professor of Physics

Director, Stanford Institute for Theoretical Physics (SITP)

Leonard Susskind



Room 332
Varian Physics Bldg
382 Via Pueblo Mall
Stanford, CA 94305-4060

tel 650-723-2686
fax 650-723-9389
susskind@stanford.edu


Research Interests

Current research is involved with the following topics: models of internal structure of hadrons, gauge theories, quark confinement, symmetry breaking, instantons, quantum statistical mechanics, baryon production in the universe, model for fermion masses, gravity in lower dimensions and quantum cosmology.

Career History

  • B.S., 1962, City College of New York
  • Ph.D., 1965, Cornell University
  • National Science Foundation Postdoctoral Fellow, Cornell University, 1965-66
  • Assistant Professor of Physics, Belfer Graduate School of Science, Yeshiva University, 1966-68
  • Associate Professor of Physics, Belfer Graduate School of Science, Yeshiva University 1968-70
  • Professor of Physics, University of Tel Aviv, 1971-72
  • Professor of Physics, Belfer Graduate School of Science, Yeshiva University 1970-79
  • Professor of Physics, Stanford University, 1979-present
  • Pregel Award, New York Academy of Science, 1975
  • Loeb Lecturer, Harvard University, 1976
  • J.J. Sakurai Prize in Theoretical Particle Physics, 1997
  • Felix Bloch Professorship in Physics, 2000-present
  • Director, Stanford Institute for Theoretical Physics,


Graduate Students


Other Things of Interest

Society of Physics Students

Selasa, 27 Mei 2008

Physics III: Vibrations and Waves



This is a picture of Prof. Lewin, taken by Prof. Lewin. It was the "Astronomy Picture of the Day" (APOD) on September 13, 2004. It was also presented to his 8.03 students as a challenge to obtain extra course credit if they were able to explain this phenomenon. On December 7, Prof. Lewin revealed the physics (and demonstrated it) in lecture 22. The solution was also revealed by APOD to the many thousands of people who were puzzled by it and who tried to explain it.

Instructors:
Prof. Nergis Mavalvala
(Recitations)
Prof. Walter Lewin
Prof. Wolfgang Ketterle
(Recitations)
MIT Course Number:
8.03
Level:
Undergraduate




Course Features

Course Description

In addition to the traditional topics of mechanical vibrations and waves, coupled oscillators, and electro-magnetic radiation, students will also learn about musical instruments, red sunsets, glories, coronae, rainbows, haloes, X-ray binaries, neutron stars, black holes and big-bang cosmology.

OpenCourseWare presents another version of 8.03 that features a full set of lecture notes and take-home experiments.


Sumber:


MIT Open Course Ware

Senin, 19 Mei 2008

Pendahuluan Fisika Zat Padat

Matakuliah : Pendahuluan Fisika Zat Padat

Nama Dosen :

1. Dra. Wiendartun, M.Si

2. Dra. Heni, M.Si.

3. Drs. Yuyu R. Tayubi, M.Si.


Buku Sumber :

Buku Utama :

Kittel Charles, Introduction to Solid State Physics 6th, 1991, John Wiley & Sons, New York

Referensi :

1. Ashcroft and Mermin, Solid State Physics, 1976, Saunders College , Philadelphia
2. M.A.Oemar, Fundamental of Solid State Physics, 1977, Addison Wesley, USA.
3. Adrianus J Dekker, Solid State Physics, 1978, Maruzen company LTD, Japan
4. H.M.Rosenberg, The Solid State Physics Third Edition, 1987, Oxford Science Publications, USA.
4. Christman, Introduction to Solid Physics, 1989, John Wiley & Sons, USA.

A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification. The word crystal is derived from the Ancient Greek word κρύσταλλος (krustallos), meaning both “ice” and “rock crystal”,[1] from κρύος (kruos), “icy cold, frost”.[2][3]

Most common metals are polycrystals. Crystals are often symmetrically intergrown to form crystal twins.



[pdf] 3.IkatanKristal(kuliah-2).pdf
7.6 Pertemuan ke -6 : Vibrasi Kristal
[pdf] 3.Ikatan Kristal.pdf
7.7 Pertemuan ke -7 : Vibrasi Kristal
[pdf] 4.Vibrasi (kuliah).pdf
7.8 Pertemuan ke -8 : Test Unit - I

7.9 Pertemuan ke -9 : Sifat Thermal Kristal
[pdf] 5.SIFAT TERMAL KRISTAL.pdf
7.10 Pertemuan ke-10 : Sifat Thermal Kristal
[pdf] 5.SifatThermalKristal(Kuliah).pdf


Crystal structure

Halite (sodium chloride) - a single, large crystal.

The process of forming a crystalline structure from a fluid or from materials dissolved in the fluid is often referred to as the crystallization process. In the old example referenced by the root meaning of the word crystal, water being cooled undergoes a phase change from liquid to solid beginning with small ice crystals that grow until they fuse, forming a polycrystalline structure. The physical properties of the ice depend on the size and arrangement of the individual crystals, or grains, and the same may be said of metals solidifying from a molten state.

Which crystal structure the fluid will form depends on the chemistry of the fluid, the conditions under which it is being solidified, and also on the ambient pressure. While the cooling process usually results in the generation of a crystalline material, under certain conditions, the fluid may be frozen in a noncrystalline state. In most cases, this involves cooling the fluid so rapidly that atoms cannot travel to their lattice sites before they lose mobility. A noncrystalline material, which has no long-range order, is called an amorphous, vitreous, or glassy material. It is also often referred to as an amorphous solid, although there are distinct differences between crystalline solids and amorphous solids: most notably, the process of forming a glass does not release the latent heat of fusion.

Crystalline structures occur in all classes of materials, with all types of chemical bonds. Almost all metal exists in a polycrystalline state; amorphous or single-crystal metals must be produced synthetically, often with great difficulty. Ionically bonded crystals can form upon solidification of salts, either from a molten fluid or upon crystallization from a solution. Covalently bonded crystals are also very common, notable examples being diamond, silica, and graphite. Polymer materials generally will form crystalline regions, but the lengths of the molecules usually prevent complete crystallization. Weak van der Waals forces can also play a role in a crystal structure; for example, this type of bonding loosely holds together the hexagonal-patterned sheets in graphite.

Most crystalline materials have a variety of crystallographic defects. The types and structures of these defects may have a profound effect on the properties of the materials.

Crystalline phases

Special cases

A large monocrystal of potassium dihydrogen phosphate grown from solution by Saint-Gobain for the megajoule laser of CEA.
Gallium, a metal that easily forms large single crystals
Ice crystals
Fossil shell with calcite crystals

Since the initial discovery of crystal-like individual arrays of atoms that are not regularly repeated, made in 1982 by Dan Shechtman, the acceptance of the concept and the word quasicrystal have led the International Union of Crystallography to redefine the term crystal to mean "any solid having an essentially discrete diffraction diagram", thereby shifting the essential attribute of crystallinity from position space to Fourier space. Within the family of crystals one distinguishes between traditional crystals, which are periodic, or repeating, at the atomic scale, and aperiodic (incommensurate) crystals which are not. This broader definition adopted in 1996 reflects the current understanding that microscopic periodicity is a sufficient but not a necessary condition for crystals.

While the term "crystal" has a precise meaning within materials science and solid-state physics, colloquially "crystal" refers to solid objects that exhibit well-defined and often pleasing geometric shapes. In this sense of the word, many types of crystals are found in nature. The shape of these crystals is dependent on the types of molecular bonds between the atoms to determine the structure, as well as on the conditions under which they formed. Snowflakes, diamonds, and table salt are common examples of crystals.

Some crystalline materials may exhibit special electrical properties such as the ferroelectric effect or the piezoelectric effect. Additionally, light passing through a crystal is often refracted or bent in different directions, producing an array of colors; crystal optics is the study of these effects. In periodic dielectric structures a range of unique optical properties can be expected as seen in photonic crystals.




Lihat Juga:

Pendahuluan Fisika Zat Padat

Disusun Ulang Oleh:

Arip Nurahman

Department of Physics, Indonesia University of Education

&

Follower Open Course Ware at MIT-Harvard University, Cambridge.USA.

Semoga Bermanfaat dan Terima Kasih

Minggu, 18 Mei 2008

1. Bidang Keahlian Khusus Penelitian Fisika Komputasi & Elektronika (Fisika Untuk Teknologi Informasi dan Komunikasi serta Elektronika)

Bidang Keahlian Khusus Penelitian Fisika Komputasi & Elektronika
(Fisika Untuk Teknologi Informasi dan Komunikasi serta Elektronika)
Division of Physics for ICT & Electronics


Kepala Penanggung Jawab:

Bambang Achdiyat
&
Rizkiyana Putra M.

Sekilas Fisika Komputasi

Disiplin ilmu Fisika Komputasi yang menggabungkan ilmu fisika, analisis numerik, dan pemrogaman komputer, telah memudahkan peneliti dalam mengolah data-data eksperimen yang besar dan tidak linier, kata pakar Fisika Komputasi Universitas Sumatera Utara Prof Dr.Drs. Muhammad Zarlis,MSc,.

Dalam makalahnya, Guru Besar Tetap Ilmu Fisika Komputasi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatera Utara itu mengatakan, dalam Fisika Komputasi eksprimen simulasi, model matematis yang non-linear, dan nonsimetri dapat diselesaikan melalui bantuan metode numerik dalam bentuk program komputer.

Dengan demikian, keberadaan fisika eksperimen, fisika teori dan fisika komputasi adalah saling mendukung dalam penelitian dan pengembangan bidang ilmu fisika, katanya. Fisika Komputasi adalah satu bagian integral dari perkembangan masalah atau gejala-gejala fisika dan berkemampuan untuk mengantisipasinya dengan menggunakan perangkat komputer.

Penerapan komputer dalam bidang ilmu fisika banyak terlihat pada pemecahan masalah-masalah analitik yang kompleks dan pekerjaan-pekerjaan numerikal untuk menyelesaikan secara interaktif. Lebih jauh ia menjelaskan komputer adalah hasil produk teknologi tinggi yang akhir-akhir ini telah banyak dijumpai, dipakai, dan dimanfaatkan pada berbagai bidang kegiatan di laboratorium fisika baik di perguruan tinggi negeri maupun swasta.

Pemakaian komputer ini lebih meningkat lagi setelah diproduksinya berbagai jenis komputer yang harganya relatif lebih murah. Pengalaman di lapangan menunjukkan bahwa pemakaian komputer di laboratorium-laboratorium masih terbatas untuk pengetikan atau pengolahan data tertentu, dengan kata lain pemakaian komputer sebagai alat yang serbaguna belum maksimal.

Bila dilihat dari tenaga akademis, masih banyak dijumpai tenaga pengajar yang masih enggan dalam menggunakan komputer, sedangkan komputer adalah sebagai alat bantu utama pengembangan fisika komputasi.(-H2O-)


Divisi Penelitian Peralatan Elektronika dan Komputer Dasar



Keterampilan Komputer Dasar (PC & Laptop)

  • HardWare



  • 1 CPU

  • 2 Monitor

  • SoftWare

  • 1. Instalasi

  • 2. Proteksi atau Keamanan

  • 3. Pemeliharaan

Keterampilan Jaringan (Networking) LAN, WAN, Ethernet & Internet
  • Divisi Wajan Bolic



Divisi LitBang Multi Media Pendidikan

Para Teladan Kami

MULTIMEDIA PENDIDIKAN

Sistem pendidikan dewasa ini telah mengalami kemajuan yang sangat pesat. Berbagai cara telah dikenalkan serta di gunakan dalam proses belajar mengajar (PBM) dengan harapan pengajaran guru akan lebih berkesan dan pembelajaran bagi murid akan lebih bermakna. Sejak beberapa tahun belakangan ini teknologi informasi dan komunikasi telah banyak digunakan dalam proses belajar mengajar, dengan satu tujuan mutu pendidikan akan selangkah lebih maju seiring dengan kemajuan teknologi. Perkembangan teknoloagi multimedia telah menjanjikan potensi besar dalam merubah cara seseorang untuk belajar, untuk memperoleh informasi, menyesuaikan informasi dan sebagainnya.

Multimedia juga menyediakan peluang bagi pendidik untuk mengembangkan teknik pembelajaran sehingga menghasilkan hasil yang maksimal. Demikian juga bagi pelajar, dengan multi media diharapkan mereka akan lebih mudah untuk menentukan dengan apa dan bagaiamana siswa untuk dapat menyerap informasi secara cepat dan efisien. Sumber informasi tidak lagi terfokus pada teks dari buku sematamata tetapi lebih luas dari itu. Kemampuan teknologi multi media yang telah terhubung internet akan semakin menambah kemudahan dalam mendapatkan informasi yang diharapkan. (-H2O-)


Sabtu, 17 Mei 2008

Physics III



Experimental set-up for an experiment on Liquid Prisms. (Image adapted from 8.03 take-home experiments.)

Instructors:
Prof. Nergis Mavalvala
Prof. Thomas Greytak
MIT Course Number:
8.03
Level:
Undergraduate


Course Features

Course Description

Mechanical vibrations and waves, simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes, vibrations of continuous systems, reflection and refraction, phase and group velocity. Optics, wave solutions to Maxwell's equations, polarization, Snell's law, interference, Huygens's principle, Fraunhofer diffraction, and gratings.


Sumber:


MIT Open Course

Rabu, 07 Mei 2008

Electromagnetism II



Lightning, a form of atmospheric electromagnetism. (Image courtesy of NOAA Photo Library, NOAA Central Library; OAR/ERL/National Severe Storms Laboratory.)


Instructors:

Prof. Edmund Bertschinger

MIT Course Number:

8.07

Level:

Undergraduate


Course Features

Course Description

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.


Sumber:


MIT Open Course